הצמחת איברים הוא תחום מחקר פורץ דרך, ששואף לגדל איברים ותאים אנושיים בריאים במעבדה, להשתלה בגוף האדם.
תחום זה נושא הבטחה עצומה לטיפול במגוון מחלות קשות, ביניהן מחלות כרוניות, פציעות קשות ותופעות מולדות.
הרעיון של גידול איברים אנושיים במעבדה קיים כבר שנים רבות, אך רק בשנים האחרונות חלה התקדמות משמעותית בתחום.
תחילת הדרך התאפיינה בניסיונות לגדל תאים בודדים במעבדה, ובהמשך התקדמו המדענים לגידול רקמות פשוטות.
פריצת דרך משמעותית התרחשה בשנות ה-90, עם פיתוח טכנולוגיות הנדסת רקמות והדפסת תלת-ממד, שאפשרו יצירת מבנים תלת-ממדיים מורכבים יותר.
הנדסת רקמות:
טכנולוגיה זו מתמקדת בגידול תאים אנושיים על גבי פיגומים תלת-ממדיים, תוך יצירת מבנה ותפקוד דמויי איבר. תהליך זה נעשה בכמה שלבים:
- בחירת תאים: תאים אנושיים מתאימים נלקחים ממקורות שונים, כגון ביופסיה מהחולה, תאי גזע או תאים עובריים.
- ריבוי תאים: התאים מתרבים במעבדה בתנאים מבוקרים.
- פיגום: יצירת פיגום תלת-ממדי מחומרים ביולוגיים או סינתטיים, המשמש כבסיס לגידול הרקמה.
- זריעה: התאים מופקדים על גבי הפיגום.
- הבשלה: יצירת תנאים אופטימליים לגידול הרקמה, תוך אספקת חומרי מזון וחמצן.
- השתלה: לאחר שהרקמה צמחה והתפתחה באופן מספק, ניתן להשתיל אותה בגוף החולה.
הנדסת רקמות מאפשרת גידול של מגוון רחב של רקמות, ביניהן:
- עור: לטיפול בכוויות, פצעים כרוניים וניתוחים פלסטיים.
- עצם: לטיפול בשברים, פציעות וניתוחים אורתופדיים.
- שריר: לטיפול בפציעות שרירים, ניוון שרירים ופירוק שרירים.
- סחוס: לטיפול בדלקת פרקים, פציעות סחוס וניתוחים אורתופדיים.
- כלי דם: לטיפול במחלות לב וכלי דם, השתלות איברים וניתוחים מורכבים.
האתגרים העיקריים בתחום הנדסת רקמות:
- יצירת כלי דם: אספקת חמצן וחומרי מזון לכל חלקי הרקמה היא חיונית להצלחתה.
- השתלבות עצבית: יצירת קשר עצבי תקין בין הרקמה המושתלת לגוף החולה.
- דחייה חיסונית: מניעת דחיית הרקמה המושתלת על ידי מערכת החיסון של הגוף.
הדפסת תלת-ממד של איברים:
טכנולוגיה פורצת דרך זו מאפשרת יצירת איברים מלאכותיים באמצעות הדפסה של תאים אנושיים וחומרים ביולוגיים. תהליך ההדפסה נעשה בשכבות, תוך שימוש במדפסות תלת-ממדיות מיוחדות.
יתרונות הדפסת תלת-ממד:
- דיוק: יצירת איברים בעלי מבנה מורכב ומדויק.
- התאמה אישית: הדפסת איברים בהתאמה אישית למטופל, תוך שימוש בתאים שלו.
- זמינות: פוטנציאל להגדלת היצע האיברים הזמינים להשתלה.
האתגרים העיקריים בתחום הדפסת תלת-ממד:
- חומרים: פיתוח חומרים ביולוגיים מתאימים להדפסה ולתפקוד תקין של האיבר.
- כלי דם: יצירת מערכת כלי דם יעילה בתוך האיבר המודפס.
- הבשלה: יצירת תנאים אופטימליים להתפתחות הרקמה המודפסת.
השתלת תאי גזע:
תאי גזע הם תאים לא ממוינים בעלי יכולת התמיינות גבוהה. תאים אלה יכולים להתפתח למגוון רחב של סוגי תאים, מה שהופך אותם לפתרון פוטנציאלי לטיפול במגוון מחלות.
האתגרים העומדים בפני התחום:
- הנדסת רקמות מורכבות: יצירת איברים בעלי תפקוד מלא, כגון מערכת כלי דם ועצבים. עד כה, הצליחו המדענים לגדל רק איברים פשוטים יחסית, וחסרה עדיין דרך ליצור איברים מורכבים בעלי תפקוד מלא.
- דחייה חיסונית: מניעת דחיית האיבר המושתל על ידי מערכת החיסון של הגוף. פתרון אפשרי לבעיה זו הוא גידול איברים מתאים גנטית לחולה, או שימוש בתרופות מדכאות מערכת חיסון.
- הבטחות אתיות: גידול איברים אנושיים במעבדה מעלה שאלות אתיות מורכבות, כגון:
- הקצאת איברים: כיצד ייקבע מי יקבל איבר מושתל ומי יישאר ברשימת המתנה?
- שיווק איברים: האם יהיו איברים זמינים לכל, או שרק למי שיכול להרשות לעצמו?
- יצירת "חיות מחמד אנושיות": האם ראוי לגדל איברים אנושיים לצורך השתלה בבעלי חיים?
ההתקדמות המדעית בתחום:
Nos últimos anos houve um progresso significativo no campo do cultivo de órgãos. Os cientistas conseguiram cultivar órgãos simples em laboratório, como a vesícula biliar e a uretra, e até mesmo transplantá-los com sucesso em pacientes. Além disso, foram feitos avanços significativos no crescimento de tecidos mais complexos, como coração e fígado.
O futuro do transplante de órgãos:
Espera-se que o campo do cultivo de órgãos revolucione o campo da medicina.
No futuro, poderá ser possível cultivar em laboratório órgãos e células para cada pessoa, de forma personalizada, curando doenças graves e melhorando a qualidade de vida de milhões de pessoas em todo o mundo.
Experiências inovadoras na área:
Engenharia de tecidos:
- Uma equipe de cientistas da Universidade Wake Forest conseguiu cultivar uma vesícula biliar humana em laboratório e transplantá-la com sucesso em um paciente.
- Uma equipe de cientistas da Universidade de Londres conseguiu cultivar uma uretra humana em laboratório e transplantá-la com sucesso em um paciente.
Impressão 3D de órgãos:
- Uma equipe de cientistas da Universidade de Harvard conseguiu imprimir em 3D um pequeno rim humano.
- Uma equipe de cientistas da Universidade de Tel Aviv conseguiu imprimir em 3D um pequeno coração humano.
- Uma equipe de cientistas da Universidade da Califórnia em Los Angeles conseguiu imprimir em 3D um pequeno pulmão humano.
Transplante de células-tronco:
- Uma equipe de cientistas do Japão conseguiu transplantar células-tronco embrionárias no olho de um paciente diabético, resultando em uma visão melhorada.
- Uma equipe de cientistas dos Estados Unidos conseguiu transplantar células-tronco da medula espinhal de um paciente com paralisia espinhal, resultando em uma melhora na função motora.
- Uma equipe de cientistas de Israel conseguiu transplantar células-tronco do cordão umbilical de um bebê para um feto que sofria de talassemia, resultando em uma recuperação completa.
.
Referências:
h ttps://newsroom.wakehealth.edu/news-releases/2006/04/wake-forest-physician-reports-first-human-recipients-of-laboratorygrown-organs
https://www.cnbc.com/2016/02/16/wake-forest-university-scientists-print-living-body-parts.html
https://school.wakehealth.edu/research/institutes-and-centers/wake-forest-institute-for-regenerative-medicine
h ttps://healthland.time.com/2011/03/08/scientistis-grow-a-new-urethra-and-possively-many-other-human-organs-in-the-lab/
https://www.ynet.co.il/articles/0,7340,L-5494600,00.html
https://wyss.harvard.edu/news/a-step-forward-in-building-funcional-human-tissues/
https://news.harvard.edu/gazette/story/2019/03/harvard-scientists-bioprint-3-d-kidney-tubules/
https://www.ft.com/content/5bb992ca-5390-11e4-929b-00144feab7de
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537826/